2米资源网

VIP
Python3数据分析与挖掘建模实战

【8407】-Python3数据分析与挖掘建模实战

  • 本站均为资源介绍,仅限用于学习和研究,不得将上述内容用于商业或者非法用途,
  • 否则一切后果请用户自负。您必须在下载后的24个小时之内,从您的电脑中彻底删除
  • 如果喜欢该资源请支持正版。如发现本站有侵权违法内容,请联系后查实将立刻删除。
  • 资源简介:Python3数据分析与挖掘建模实战
  • 详细描述

    Python3数据分析与挖掘建模实战


    第1章 课程介绍【赠送相关电子书+随堂代码】
     
    本章首先介绍本课程是什么,有什么特色,能学习到什么,内容如何安排,需要什么基础,是否适合学习这门课程等。然后对数据分析进行概述,让大家对数据分析的含义和作用有一个整体的认知,让大家对自己接下来要做的事情,有一个基本的概念与了解。...
     
     1-1 课前必读(不看会错过一个亿)
     1-2 课程导学 
     1-3 数据分析概述
    第2章 数据获取
     
    数据从哪里来?怎么来?这一章,我们会介绍数据获取的一般手段。主要包括数据仓库、抓取、资料填写、日志、埋点、计算等手段。同时,我们也会介绍几个常用的数据网站,供大家参考与学习。
     
     2-1 数据仓库
     2-2 监测与抓取
     2-3 填写、埋点、日志、计算
     2-4 数据学习网站
    第3章 单因子探索分析与数据可视化
     
    有了数据,如何上手?这一章,我们会介绍探索分析的一部分---单因子探索分析和可视化的内容。我们会以基础的统计理论知识为切入点,学习异常值分析、对比分析、结构分析、分布分析。同时,引入接下来几章都会用到的案例-HR人力资源分析表,并用理论与可视化的方法,完成对此表的初步分析。...
     
     3-1 数据案例介绍
     3-2 集中趋势,离中趋势
     3-3 数据分布--偏态与峰度
     3-4 抽样理论
     3-5 编码实现(基于python2.7)
     3-6 数据分类
     3-7 异常值分析
     3-8 对比分析
     3-9 结构分析
     3-10 分布分析
     3-11 Satisfaction Level的分析
     3-12 LastEvaluation的分析
     3-13 NumberProject的分析
     3-14 AverageMonthlyHours的分析
     3-15 TimeSpendCompany的分析
     3-16 WorkAccident的分析
     3-17 Left的分析
     3-18 PromotionLast5Years的分析
     3-19 Salary的分析
     3-20 Department的分析
     3-21 简单对比分析操作
     3-22 可视化-柱状图
     3-23 可视化-直方图
     3-24 可视化-箱线图
     3-25 可视化-折线图
     3-26 可视化-饼图
     3-27 本章小结
    第4章 多因子探索分析
     
    上了手,然后呢?这一章,我们介绍探索分析的另一部分---多因子复合探索分析。我们同样以基础的统计知识为切入点,学习多因子间互相影响与配合的分析方法,如交叉分析、分组分析、相关分析、成分分析等。同时,以HR人力资源分析表为例,进行进一步的探索。...
     
     4-1 假设检验
     4-2 卡方检验
     4-3 方差检验
     4-4 相关系数
     4-5 线性回归
     4-6 主成分分析
     4-7 编码实现
     4-8 交叉分析方法与实现
     4-9 分组分析方法与实现
     4-10 相关分析与实现
     4-11 因子分析与实现
     4-12 本章小结
    第5章 预处理理论
     
    数据已了解,用起来!不着急,先加工。这一章,我们会介绍特征工程的主要内容,重点会介绍数据清洗和数据特征预处理的主要内容,包括数据清洗、特征获取、特征处理(内含对指化、归一化、标准化等)、特征降维、特征衍生。预处理的好坏,直接影响着接下来模型的效果。...
     
     5-1 特征工程概述
     5-2 数据样本采集
     5-3 异常值处理
     5-4 标注
     5-5 特征选择
     5-6 特征变换-对指化
     5-7 特征变换-离散化
     5-8 特征变换-归一化与标准化
     5-9 特征变换-数值化
     5-10 特征变换-正规化
     5-11 特征降维-LDA
     5-12 特征衍生
     5-13 HR表的特征预处理-1
     5-14 HR表的特征预处理-2
     5-15 本章小结
    第6章 挖掘建模
     
    把数据用起来!这一章,我们会介绍数据挖掘与建模的主要内容。主要包含五类模型的建立与实践,分别为:分类模型(KNN、朴素贝叶斯、决策树、SVM、集成方法、GBDT……),回归模型与回归思想分类(线性回归、逻辑斯特回归【也叫罗吉回归,逻辑回归。音译区别】、神经网络、回归树),聚类模型(K-means、DBSCAN、层次聚类、...
     
     6-1 机器学习与数据建模
     6-2 训练集、验证集、测试集
     6-3 分类-KNN 
     6-4 分类-朴素贝叶斯 
     6-5 分类-决策树
     6-6 分类-支持向量机
     6-7 分类-集成-随机森林
     6-8 分类-集成-Adaboost
     6-9 回归-线性回归
     6-10 回归-分类-逻辑回归
     6-11 回归-分类-人工神经网络-1
     6-12 回归-分类-人工神经网络-2
     6-13 回归-回归树与提升树
     6-14 聚类-Kmeans-1
     6-15 聚类-Kmeans-2
     6-16 聚类-DBSCAN
     6-17 聚类-层次聚类
     6-18 聚类-图分裂
     6-19 关联-关联规则-1
     6-20 关联-关联规则-2
     6-21 半监督-标签传播算法
     6-22 本章小结
    第7章 模型评估
     
    哪个模型好?上一章,我们学习了很多模型,一个数据集,可能用多种模型都可以进行建模,那么哪种模型好,就需要有些指标化的东西帮我们决策。这一章,我们会介绍使用混淆矩阵和相应的指标、ROC曲线与AUC值来评估分类模型;用MAE、MSE、R2来评估回归模型;用RMS、轮廓系数来评估聚类模型。...
     
     7-1 分类评估-混淆矩阵
     7-2 分类评估-ROC、AUC、提升图与KS图
     7-3 回归评估
     7-4 非监督评估
    第8章 总结与展望
     
    这一章,我们将回顾本课程的全部内容,并从多个角度,重新看待我们的数据分析工作。最后,我们会了解到,学习了这门课程以后,还可以在哪些方面进行发展。
     
     8-1 课程回顾与多角度看数据分析
     8-2 大数据与学习这门课后还能干什么?.mp4
    本课程已完结

     
    Python3数据分析与挖掘建模实战
    百度网盘分享地址: 链接: https://pan.baidu.com/s/1dbmi5-urVWaRU_08w9JBRA 提取码: kxyd
    2米资源网