2米资源网

VIP
唐宇迪 自然语言处理通用框架-BERT实战

【16404】-唐宇迪 自然语言处理通用框架-BERT实战

  • 本站均为资源介绍,仅限用于学习和研究,不得将上述内容用于商业或者非法用途,
  • 否则一切后果请用户自负。您必须在下载后的24个小时之内,从您的电脑中彻底删除
  • 如果喜欢该资源请支持正版。如发现本站有侵权违法内容,请联系后查实将立刻删除。
  • 资源简介:唐宇迪 自然语言处理通用框架-BERT实战
  • 详细描述

    唐宇迪 自然语言处理通用框架-BERT实战


    01自然语言处理通用框架BERT原理解读
    01 BERT课程简介_ev.mp4
    02 BERT任务目标概述_ev.mp4
    03 传统解决方案遇到的问题_ev.mp4
    04 注意力机制的作用_ev.mp4
    05 self-attention计算方法_ev.mp4
    06特征分配与softmax机制_ev.mp4
    07 Multi-head的作用_ev.mp4
    08 位置编码与多层堆叠_ev.mp4
    09 transformer整体架构梳理_ev.mp4
    10 BERT模型训练方法_ev.mp4
    11 训练实例_ev.mp4
    02谷歌开源项目BERT源码解读与应用实例
    01 BERT开源项目简介_ev.mp4
    02项目参数配置_ev.mp4
    03 数据读取模块_ev.mp4
    04 数据预处理模块_ev.mp4
    05 tfrecord数据源制作_ev.mp4
    06 Embedding层的作用_ev.mp4
    07 加入额外编码特征_ev.mp4
    08 加入位置编码特征_ev.mp4
    09 mask机制的作用_ev.mp4
    10 构建QKV矩阵_ev.mp4
    11 完成Transformer模块构建_ev.mp4
    12 训练BERT模型_ev.mp4
    03项目实战-基于BERT的中文情感分析实战
    01中文分类数据与任务概述_ev.mp4
    02读取处理自己的数据集_ev.mp4
    03 训练BERT中文分类模型_ev.mp4
    04项目实战-基于BERT的中文命名实体识别识别实战
    01命名实体识别数据分析与任务目标_ev.mp4
    02 NER标注数据处理与读取_ev.mp4
    03 构建BERT与CRF模型_ev.mp4
    05必备基础知识点-woed2vec模型通俗解读
    01 词向量模型通俗解释_ev.mp4
    02 模型整体框架_ev.mp4
    03 训练数据构建_ev.mp4
    04 CBOW与Skip-gram模型_ev.mp4
    05 负采样方案_ev.mp4
    06必备基础-掌握Tensorflow如何实现word2vec模型
    01 数据与任务流程_ev.mp4
    02 数据清洗_ev.mp4
    03 batch数据制作_ev.mp4
    04 网络训练_ev.mp4
    05 可视化展示_ev.mp4
    07必备基础知识点-RNN网络架构与情感分析应用实例
    01 RNN网络模型解读_ev.mp4
    02 NLP应用领域与任务简介_ev.mp4
    03 项目流程解读_ev.mp4
    04 加载词向量特征_ev.mp4
    05 正负样本数据读取_ev.mp4
    06构建LSTM网络模型_ev.mp4
    07 训练与测试效果_ev.mp4
    08 LSTM情感分析_ev.mp4
    08医学糖尿病数据命名实体识别
    01 数据与任务介绍_ev.mp4
    02 整体模型架构_ev.mp4
    03数据-标签-语料库处理_ev.mp4
    04 训练网络模型_ev.mp4
    05医疗数据集(糖尿病)实体识别_ev.mp4
    06 输入样本填充补齐_ev.mp4
    配套资源


    唐宇迪 自然语言处理通用框架-BERT实战
    百度网盘分享地址: 链接: https://pan.baidu.com/s/1Chmzdw2WAxhSFPrQmpm9bA?pwd=xcy8 提取码: xcy8
    2米资源网